ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 110809
Темы:    [ Общая касательная к двум окружностям ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Окружность C1 радиуса  2  с центром O1 и окружность C2 радиуса    с центром O2 расположены так, что  O1O2 = 2 .   Прямая l1 касается окружностей в точках A1 и A2, а прямая l2 – в точках B1 и B2. Окружности C1 и C2 лежат по одну сторону от прямой l1 и по разные стороны от прямой l2,  A1, B1C1A2, B2C2,  точки A1 и B1 лежат по разные стороны от прямой O1O2. Через точку B1 проведена прямая l3, перпендикулярная прямой l2. Прямая l1 пересекает прямую l2 в точке A, а прямую l3 – в точке B. Найдите A1A2, B1B2 и стороны треугольника ABB1.


Подсказка

См. задачу 110808.


Ответ

A1A2 = 7,  B1B2 = 5,  AB1 = 6,  AB = 12,  BB1 = 6 .

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 5752

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .