ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 110927
УсловиеПаук в лесу сплёл паутину. Длинные нити привязал к веткам. И в эту паутину залетела бабочка. За один ход бабочка или паук могут передвинуться по отрезку нити в соседнюю точку пересечения нитей; бабочка также может выбраться на конец нити (ветку), если перед этим находилась в соседней точке пересечения. Они ходят по очереди, начинает бабочка. Если бабочка смогла добраться до веток, она спаслась (это её победа). Если паук добрался до бабочки, он её съедает (и это его победа). Возможен и такой исход, когда никто не побеждает, а игра длится бесконечно. а) Чем закончится игра в ситуации, изображённой на рисунке? (У паутины четыре кольца и семь радиусов.б) Чем закончится игра, если колец три, а радиусов семь? в) Чем закончится игра, если колец четыре, а радиусов десять? г) Разберите общий случай: K ≥ 2 колец и R ≥ 3 радиусов. Решение г) Заметим, что у бабочки всегда есть ничейная стратегия. Она состоит в том, что бабочка делает ход по своему кольцу в сторону от паука. При R > 3 очевидно, что пауку надо делать ход по своему кольцу в ту же сторону, иначе бабочка выходит по тому радиусу, на котором сейчас находится. При этом положение членистоногих относительно паутины и друг относительно друга не
меняется, поэтому бабочка снова может сделать аналогичный ход, и так далее до бесконечности. Ответа), б) Ничья; в) бабочка выиграет; г) при K ≥ [R/2] ничья, в остальных случаях бабочка выиграет. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|