ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 110940
Темы:    [ Теорема о трех перпендикулярах ]
[ Ортогональное проектирование ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

Два квадрата ABCD и KLMN расположены в пространстве так, что центр квадрата KLMN совпадает с серединой стороны BC . Точка B лежит на стороне LM и BM<BL , точка N равноудалена от точек C и D . Расстояние от точки M до ближайшей к ней точки квадрата ABCD равно , а расстояние от точки K до ближайшей к ней точки квадрата ABCD равно 6. Найдите длины сторон квадратов ABCD и KLMN и расстояние от точки N до плоскости ABCD .

Ответ

3 , 15, d = 6 .

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 8832

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .