ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 111578
Темы:    [ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

На стороне AC треугольника ABC взята точка D так, что AD : DC = 1 : 2.  Докажите что у треугольников ADB и CDB есть по равной медиане.


Решение

Пусть AM и DN – медианы треугольников ADB и CDB соответственно. Отрезок MN – средняя линия треугольника DBC , поэтому  MN = CD = AD и MN || AD, значит, четырёхугольник AMND – параллелограмм. Следовательно,  AM = DN,  что и требовалось.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4683

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .