ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 115460
УсловиеВ выпуклом четырёхугольнике ABCD диагональ AC делит пополам отрезок, соединяющий середины сторон BC и AD . В каком отношении она делит диагональ BD ?РешениеПусть P — середина BC , Q — середина AD , N — середина PQ .Первый способ. Выберем на прямой AC такие точки K и L (см. верхний рисунок), что BK||PQ||DL . Тогда в треугольнике BCK отрезок PN параллелен основанию и проходит через середину стороны, так что это средняя линия, откуда BK=2PN . Аналогично DL=2QN . Так как PN=QN , то DL=BK . Поскольку BK||DL и BK=DL , то BKDL — параллелограмм, поэтому KL делит BD пополам. Второй способ. Пусть T — середина отрезка AB . Проведем отрезки TP и TQ (см. нижний рисунок). Тогда TP — средняя линия треугольника ABC , следовательно, TP||AC . В треугольнике PQT прямая AC делит сторону PQ пополам и параллельна TP , поэтому она пересекает сторону TQ в ее середине. Так как TQ||BD , то прямая AC делит пополам отрезок BD . Третий способ. Снабдим вершины четырёхугольника единичными массами. Тогда центром масс этой системы будет точка N . Но центром масс точек A и C является середина отрезка AC , аналогично и для точек B и D . Значит, N — середина отрезка, соединяющего середины AC и BD . Таким образом, AC делит отрезок BD пополам. Четвертый способ. Пусть Ответпополам.Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |