ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 115460
Темы:    [ Параллелограмм Вариньона ]
[ Теорема о группировке масс ]
[ Векторы помогают решить задачу ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

В выпуклом четырёхугольнике ABCD диагональ AC делит пополам отрезок, соединяющий середины сторон BC и AD . В каком отношении она делит диагональ BD ?

Решение

Пусть P  — середина BC , Q  — середина AD , N  — середина PQ .
Первый способ. Выберем на прямой AC такие точки K и L (см. верхний рисунок), что BK||PQ||DL . Тогда в треугольнике BCK отрезок PN параллелен основанию и проходит через середину стороны, так что это средняя линия, откуда BK=2PN . Аналогично DL=2QN . Так как PN=QN , то DL=BK . Поскольку BK||DL и BK=DL , то BKDL — параллелограмм, поэтому KL делит BD пополам.





Второй способ. Пусть T  — середина отрезка AB . Проведем отрезки TP и TQ (см. нижний рисунок). Тогда TP  — средняя линия треугольника ABC , следовательно, TP||AC . В треугольнике PQT прямая AC делит сторону PQ пополам и параллельна TP , поэтому она пересекает сторону TQ в ее середине. Так как TQ||BD , то прямая AC делит пополам отрезок BD .
Третий способ. Снабдим вершины четырёхугольника единичными массами. Тогда центром масс этой системы будет точка N . Но центром масс точек A и C является середина отрезка AC , аналогично и для точек B и D . Значит, N  — середина отрезка, соединяющего середины AC и BD . Таким образом, AC делит отрезок BD пополам.
Четвертый способ. Пусть = , = , = . Тогда =(+)= . По условию, точка N лежит на отрезке AC , то есть коллинеарен : =k . Тогда =k , откуда =· , то есть вектор, с началом в точке A и концом в середине BD , коллинеарен . Тем самым доказано, что AC делит отрезок BD пополам.

Ответ

пополам.

Источники и прецеденты использования

олимпиада
Название Окружная олимпиада (Москва)
год
Год 2009
Класс
Класс 9
задача
Номер 06.4.9.5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .