ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 116173
УсловиеДве окружности пересекаются в точках P и Q. Tочка A лежит на первой окружности, но вне второй. Прямые AP и AQ пересекают вторую окружность в точках B и C соответственно. Укажите положение точки A, при котором треугольник ABC имеет наибольшую площадь. Решение При движении точки A по первой окружности (рис. слева) угол PAQ не меняется. Поскольку угол PAQ равен полуразности дуг BC и PQ, то угловая величина дуги BC постоянна, то есть постоянна длина хорды BC. ОтветA – пересечение первой окружности с линией центров. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|