ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Докажите, что можно на каждом ребре произвольного тетраэдра записать по неотрицательному числу так, чтобы сумма чисел на сторонах каждой грани численно равнялась её площади.

Вниз   Решение


В прямоугольном треугольнике $ABC$ ($\angle C=90^{\circ}$) вписанная окружность касается катета $BC$ в точке $K$. Докажите, что хорда вписанной окружности, высекаемая прямой $AK$ в два раза больше, чем расстояние от вершины $C$ до этой прямой.

ВверхВниз   Решение


Андрей ведёт машину со скоростью 60 км/ч. Он хочет проезжать каждый километр на 1 минуту быстрее. На сколько ему следует увеличить скорость?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 28]      



Задача 57521

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3
Классы: 8,9

Докажите, что среди всех треугольников с фиксированным углом $ \alpha$ и площадью S наименьшую длину стороны BC имеет равнобедренный треугольник с основанием BC.
Прислать комментарий     Решение


Задача 57522

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Окружность, вписанная в угол ]
Сложность: 3
Классы: 8,9

Докажите, что среди всех треугольников ABC с фиксированным углом $ \alpha$ и полупериметром p наибольшую площадь имеет равнобедренный треугольник с основанием BC.
Прислать комментарий     Решение


Задача 57524

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Теорема косинусов ]
[ Неравенство Коши ]
Сложность: 3
Классы: 8,9

Рассмотрим все остроугольные треугольники с заданными стороной a и углом α.
Чему равен максимум суммы квадратов длин сторон b и c?

Прислать комментарий     Решение

Задача 108993

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3
Классы: 8,9,10

Какую наибольшую площадь может иметь треугольник, стороны которого a,b,c заключены в следующих пределах:

0<a<= 1<= b<= 2<= c<= 3?

Прислать комментарий     Решение

Задача 32883

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Формула Герона ]
[ Неравенство Коши ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Доказать, что
  а) из всех треугольников с данной стороной и данным периметром наибольшую площадь имеет равнобедренный треугольник (у которого данная сторона является основанием);
  б) из всех треугольников с данной стороной и данной площадью наименьший периметр имеет равнобедренный треугольник (у которого данная сторона является основанием).

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 >> [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .