ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 116518
Темы:    [ Расстояние от точки до плоскости ]
[ Сечения, развертки и остовы (прочее) ]
[ Правильная пирамида ]
[ Теорема о трех перпендикулярах ]
[ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Неопределено ]
Сложность: 3+
Классы: 10,11
В корзину
Прислать комментарий

Условие

В правильной треугольной пирамиде ABCD длина бокового ребра равна 12, а угол между основанием ABC и боковой гранью равен . Точки K, M, N – середины рёбер AB, CD, AC соответственно. Точка E лежит на отрезке KM и 2ME = KE. Через точку E проходит плоскость П перпендикулярно отрезку KM. В каком отношении плоскость П делит рёбра пирамиды? Найдите площадь сечения пирамиды плоскостью П и расстояние от точки N до плоскости П.


Ответ

, , , .

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача 8941
Номер 8941

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .