ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 116715
Темы:    [ Вписанные четырехугольники (прочее) ]
[ ГМТ - окружность или дуга окружности ]
[ Радикальная ось ]
Сложность: 3+
Классы: 10,11
В корзину
Прислать комментарий

Условие

Автор: Фольклор

Четырёхугольник ABCD без параллельных сторон вписан в окружность. Для каждой пары касающихся окружностей, одна из которых имеет хорду AB, а другая – хорду CD, отметим их точку касания X. Докажите, что все такие точки X лежат на одной окружности.


Решение

Обозначим через Ω1 и Ω2 касающиеся окружности, содержащие соответственно хорды AB и СD, а через Ω – описанную окружность четырёхугольника ABCD. Пусть O – точка пересечения прямых AB и СD. Тогда прямая ABрадикальная ось окружностей Ω1 и Ω (см. задачу 56715), CD – радикальная ось окружностей Ω2 и Ω, а общая касательная окружностей Ω1 и Ω2 – их радикальная ось. Эти три радикальные оси пересекаются в радикальном центре O всех трёх окружностей (см. задачу 61192).

При этом длина касательной OX равна степени точки O относительно Ω1, то есть OA·OB. Это значит, что точка X лежит на окружности радиуса     с центром O.

Замечания

5 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 2011/2012
Номер 33
вариант
Вариант весенний тур, базовый вариант, 10-11 класс
Задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .