Страница: 1 [Всего задач: 5]
|
|
Сложность: 3 Классы: 10,11
|
Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны.
Докажите, что многогранник имеет хотя бы три равных ребра.
|
|
Сложность: 3 Классы: 10,11
|
Дана клетчатая полоска из 2n клеток, пронумерованных слева направо следующим образом:
1, 2, 3, ..., n, –n, ..., –2, –1
По этой полоске перемещают фишку, каждым ходом сдвигая её на то число клеток, которое указано в текущей клетке (вправо, если число положительно, и влево, если отрицательно). Известно, что фишка, начав с любой клетки, обойдёт все клетки полоски. Докажите, что число 2n + 1 простое.
|
|
Сложность: 3+ Классы: 10,11
|
На плоскости нарисовали кривые y = cos x и x = 100 cos(100y) и отметили все точки их пересечения, координаты которых положительны. Пусть a – сумма абсцисс, а b – сумма ординат этих точек. Найдите a/b.
|
|
Сложность: 3+ Классы: 10,11
|
Четырёхугольник ABCD без параллельных сторон вписан в окружность.
Для каждой пары касающихся окружностей, одна из которых имеет хорду AB,
а другая – хорду CD, отметим их точку касания X. Докажите,
что все такие точки X лежат на одной окружности.
|
|
Сложность: 4- Классы: 10,11
|
Белая ладья стоит на поле b2 шахматной доски 8×8, а чёрная – на поле c4. Игроки ходят по очереди, каждый – своей ладьей, начинают белые. Запрещается ставить свою ладью под бой другой ладьи, а также на поле, где уже
побывала какая-нибудь ладья. Тот, кто не может сделать ход, проигрывает. Кто из игроков может обеспечить себе победу, как бы ни играл другой? (За ход ладья сдвигается по горизонтали или вертикали на любое число клеток, и считается, что она побывала только в начальной и конечной клетках этого хода.)
Страница: 1 [Всего задач: 5]