ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 116940
Темы:    [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

В остроугольном треугольнике ABC проведены высоты AA1 и CC1. Описанная окружность Ω треугольника ABC пересекает прямую A1C1 в точках A' и C'. Касательные к Ω, проведённые в точках A' и C', пересекаются в точке B'. Докажите, что прямая BB' проходит через центр окружности Ω.


Решение

Угол BA1C1 (совпадающий с BA1C') измеряется полусуммой дуг BC' и CA', а равный ему угол A (см. задачу 52537) – половиной дуги BC. Значит, дуги BA' и BC' равны. Поэтому точки B' и B лежат на серединном перпендикуляре к хорде A'C' окружности Ω. Центр окружности Ω также лежит на этом серединном перпендикуляре.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2012-2013
этап
1
Вариант 4
класс
Класс 10
Задача
Номер 10.2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .