ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 116954
УсловиеФигура мамонт бьёт как слон (по диагоналям), но только в трёх направлениях из четырёх (отсутствующее направление может быть разным для разных мамонтов). Какое наибольшее число не бьющих друг друга мамонтов можно расставить на шахматной доске 8×8? Решение Оценка. Из каждого мамонта выпустим три стрелки в тех направлениях, в которых он бьёт. Сопоставим стрелку диагонали (не обязательно
главной), если мамонт, из которого ведёт стрелка, стоит в этой диагонали, а стрелка идёт вдоль неё. Тогда каждой диагонали сопоставлено не более двух стрелок: в противном случае две из них будут идти в одном направлении, и один из мамонтов будет бить другого. Поскольку диагоналей всего 30 (по 15 в каждом направлении), стрелок им сопоставлено не более 60, а значит, всего мамонтов не больше 60 : 3 = 20. Ответ20 мамонтов. ЗамечанияДля построения примера достаточно расставить 10 мамонтов на белых полях; расстановка чёрных получится поворотом на 90╟ или симметрией относительно средней линии доски. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |