Страница: 1
2 >> [Всего задач: 9]
|
|
Сложность: 3+ Классы: 8,9,10
|
Учитель записал Пете в тетрадь четыре различных натуральных числа. Для каждой пары этих чисел Петя нашёл их наибольший общий делитель. У него получились шесть чисел: 1, 2, 3, 4, 5 и N, где N > 5. Какое наименьшее значение может иметь число N?
|
|
Сложность: 3+ Классы: 8,9,10
|
После просмотра фильма зрители по очереди оценивали фильм целым числом
баллов от 0 до 10. В каждый момент времени рейтинг фильма вычислялся как сумма всех выставленных оценок, делённая на их количество. В некоторый момент времени T рейтинг оказался целым числом, а затем с каждым новым проголосовавшим зрителем он уменьшался на единицу. Какое наибольшее количество зрителей могло проголосовать после момента T?
|
|
Сложность: 4- Классы: 8,9,10
|
Правильный треугольник со стороной 3 разбит на девять треугольных клеток,
как показано на рисунке. В этих клетках изначально записаны нули. За один ход можно выбрать два числа, находящиеся в соседних по стороне клетках, и либо прибавить к обоим по единице, либо вычесть из обоих по единице. Петя хочет
сделать несколько ходов так, чтобы после этого в клетках оказались записаны в некотором порядке последовательные натуральные числа n, n + 1, ..., n + 8. При каких n он сможет это сделать?
|
|
Сложность: 4- Классы: 9,10,11
|
Петя выбрал несколько последовательных натуральных чисел и каждое записал либо красным, либо синим карандашом (оба цвета присутствуют).
Может ли сумма наименьшего общего кратного всех красных чисел и наименьшего общего кратного всех синих чисел являться степенью двойки?
|
|
Сложность: 4- Классы: 9,10,11
|
Петя выбрал 10 последовательных натуральных чисел и каждое записал либо красным, либо синим карандашом (оба цвета присутствуют).
Может ли сумма наименьшего общего кратного всех красных чисел и наименьшего общего кратного всех синих чисел оканчиваться на 2016?
Страница: 1
2 >> [Всего задач: 9]