ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 30374
Темы:    [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8
В корзину
Прислать комментарий

Условие

Докажите, что  n5 + 4n  делится на 5 при любом натуральном n.


Решение

n5 + 4n = (n5 – 5n3 + 4n) + 5n5,  а первое слагаемое делится на 5 (см. задачу 103992).

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 4
Название Делимость и остатки
Тема Теория чисел. Делимость
задача
Номер 017

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .