ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 30404
Темы:    [ Арифметика остатков (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Найдите последнюю цифру числа  1² + 2² + ... + 99².


Решение

1² + 2² + ... + 99² ≡ 10(1² + 2² + ... + 9²) = 0 (mod 10).


Ответ

0.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 4
Название Делимость и остатки
Тема Теория чисел. Делимость
задача
Номер 047

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .