ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 30418
УсловиеВ городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы каждый телефон был соединён ровно с пятью другими? РешениеПредположим, что это возможно. Рассмотрим тогда граф, вершины которого соответствуют телефонам, а рёбра – соединяющим их проводам. В этом графе 15 вершин, степень каждой из которых равна 5. Подсчитаем количество рёбер в этом графе. Для этого сначала просуммируем степени всех его вершин. Ясно, что при таком подсчёте каждое ребро учтено дважды (оно ведь соединяет две вершины!). Поэтому число рёбер графа должно быть равно 15·5 : 2. Но это число нецелое! Следовательно, такого графа не существует, а значит, и соединить телефоны требуемым образом невозможно. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |