Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Докажите, что abc = 4prR и  ab + bc + ca = r2 + p2 + 4rR.

Вниз   Решение


Около окружности описан четырёхугольник. Его диагонали пересекаются в центре этой окружности. Докажите, что этот четырёхугольник — ромб.

ВверхВниз   Решение


Двое по очереди кладут пятаки на круглый стол, причем так, чтобы они не накладывались друг на друга. Проигрывает тот, кто не может сделать ход.

Вверх   Решение

Задача 30440
Тема:    [ Симметричная стратегия ]
Сложность: 2+
Классы: 6,7,8
Из корзины
Прислать комментарий

Условие

Двое по очереди кладут пятаки на круглый стол, причем так, чтобы они не накладывались друг на друга. Проигрывает тот, кто не может сделать ход.


Решение

В этой игре выигрывает первый, независимо от размеров стола! Первым ходом он кладет пятак так, чтобы центры монеты и стола совпали. После этого на каждый ход второго игрока начинающий отвечает симметрично относительно центра стола. Отметим, что при такой стратегии после каждого хода первого игрока позиция симметрична. Поэтому если возможен очередной ход второго игрока, то возможен и симметричный ему ответный ход первого. Следовательно, он побеждает.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 8
Название Игры
Тема Теория игр
задача
Номер 008

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .