ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 30725
Темы:    [ Правило произведения ]
[ Раскладки и разбиения ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Поезду, в котором находится m пассажиров, предстоит сделать n остановок.
  а) Сколькими способами могут выйти пассажиры на этих остановках?
  б) Решите ту же задачу, если учитывается лишь количество пассажиров, вышедших на каждой остановке.


Решение

а) Заменив пассажиров монетами, а остановки – карманами, мы получим задачу, аналогичную зад. 60348.

б) Это переформулировка задачи 30719 б).


Ответ

а) ;   б) способами.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 11
Название Комбинаторика-2
Тема Классическая комбинаторика
задача
Номер 039

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .