Условие
Дно прямоугольной коробки вымощено плитками 1 × 4 и 2 × 2. Плитки высыпали из коробки и одна плитка 2 × 2 потерялась. Ее заменили на плитку 1 × 4. Докажите, что теперь дно коробки вымостить не удастся.
Решение
Рассмотрим раскраску в 4 цвета, такую, что каждая плитка 2 × 2 содержит ровно одну клетку цвета 1, а каждая плитка 1 × 4 - ни одной или две клетки цвета 1. Следовательно, четность числа плиток 2 × 2 должна совпадать с четностью числа клеток цвета 1, что и доказывает утверждение задачи.
Источники и прецеденты использования
|
книга |
Автор |
Генкин С.А., Итенберг И.В., Фомин Д.В. |
Год издания |
1994 |
Название |
Ленинградские математические кружки |
Издательство |
Киров: "АСА" |
Издание |
1 |
глава |
Номер |
12 |
Название |
Инвариант |
Тема |
Инварианты |
задача |
Номер |
014 |