ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 30780
Тема:    [ Степень вершины ]
Сложность: 2
Классы: 6,7
В корзину
Прислать комментарий

Условие

Докажите, что не существует графа с пятью вершинами, степени которых равны 4, 4, 4, 4, 2.


Решение

Пусть степень каждой из четырёх вершин равна 4. Это значит, что каждая из них соединена со всеми остальными вершинами (в том числе и с пятой). Значит, степень пятой вершины также равна 4.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 13
Название Графы-2
Тема Теория графов
задача
Номер 002

© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .