|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что для любых x1,..., xn
sin
В последовательности действительных чисел $a_1$, $a_2$, ... каждое число, начиная с третьего, равно полусумме двух предыдущих. Докажите, что все параболы вида $y = x^2 + a_nx + a_{n+1}$ (где $n$ = 1, 2, 3, ...) имеют общую точку. |
Задача 31086
УсловиеВ ориентированном графе 101 вершина. У каждой вершины число входящих и число выходящих рёбер равно 40. Доказать, что из каждой вершины можно попасть в любую другую, пройдя не более чем по трём ребрам. РешениеСм. задачу 30830 б). Источники и прецеденты использования
|
||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|