ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 32080
Темы:    [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Принцип Дирихле (углы и длины) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10
В корзину
Прислать комментарий

Условие

На плоскости даны четыре точки, не лежащие на одной прямой. Докажите, что существует неостроугольный треугольник с вершинами в этих точках.


Решение

  Рассмотрим различные случаи расположения четырёх данных точек на плоскости.
  1) Четыре данные точки являются вершинами выпуклого четырёхугольника. Сумма углов этого четырёхугольника равна 360°. Поэтому хотя бы один из его углов не острый. Обозначим вершину, угол при которой не острый, через A. Тогда треугольник с вершинами в точке A и двух соседних с ней вершинах четырёхугольника будет неостроугольным (рис. слева).
  2) Одна из точек (обозначим ее A) лежит внутри треугольника BCD, образованного остальными тремя точками (рис. в центре). Сумма углов BAC, CAD и DAB равна 360°. Поэтому по крайней мере один из них имеет величину не меньше 120°. Неостроугольный треугольник найден и в этом случае.
  3) Три точки лежат на одной прямой. Обозначим эти точки A, B и C в порядке их следования на прямой, четвёртую точку обозначим D (рис. справа). Тогда сумма углов DBA и DBC равна 180°. Значит, один из этих углов не меньше 90°. В этом случае требуемый треугольник тоже найден.

Замечания

Источник решения: книга В.О. Бугаенко "Турниры им. Ломоносова. Конкурсы по математике". МЦНМО-ЧеРо. 1998.

Источники и прецеденты использования

олимпиада
Название Турнир им.Ломоносова
год/номер
Номер 10
Дата 1987
задача
Номер 04

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .