ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 32128
УсловиеПо окружности стоит 6 чисел; каждое равно модулю разности двух чисел, стоящих после него по часовой стрелке. Сумма всех чисел равна 1.a) Найдите набор чисел, удовлетворяющий данному условию. б) Сколько различных таких наборов существует? Решения, получающиеся друг из друга поворотом окружности, считаются одинаковыми. РешениеПоскольку каждое из выписанных чисел равно модулю разности двух других, а модуль любой величины всегда неотрицателен, то все числа должны быть неотрицательны. Пусть наибольшее из них равно x. Два следующих за ним числа должны быть не больше x и различаться на x. Это возможно лишь в случае, когда одно из них равно x, а другое — нулю. Итак, в каком-то месте должны стоять либо числа x, x, 0, либо числа x, 0, x. Двигаясь по окружности против часовой стрелки, мы однозначно восстановим остальные числа. В обоих случаях получается один и тот же набор — x, x, 0, x, x, 0. Из условия, что сумма всех чисел равна 1, находим x = ¼.
ЗамечанияИсточник решения: книга "В.О.Бугаенко. Турниры им. Ломоносова. Конкурсы по математике. МЦНМО-ЧеРо. 1998".Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|