|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан выпуклый пятиугольник ABCDE. Сторонами, противоположными вершинам A, B, C, D, E, мы называем соответственно отрезки CD, DE, EA, AB, BC. Докажите, что если произвольную точку M, лежащую внутри пятиугольника, соединить прямыми со всеми его вершинами, то из этих прямых либо ровно одна, либо ровно три, либо ровно пять пересекают стороны пятиугольника, противоположные вершинам, через которые они проходят. |
Задача 35101
УсловиеДокажите, что все числа вида 1156, 111556, 11115556,... являются точными квадратами.ПодсказкаПосчитав корни из нескольких первых чисел данного ряда, можно усмотреть закономерность.РешениеПусть количество цифр в числе n=11...15..56 равно 2k. Тогда n=1111...1+44...4+1, где в первом слагаемом количество единиц равно 2k, во втором слагаемом количество четверок равно k. Число, которое записывается с помощью m единиц, равно (10m-1)/9. Поэтому n=(102k-1)/9+4*(10k-1)/9+1= (102k+4*10k+4)/9= ((10k+2)/3)2. Остается заметить, что число ((10k+2)/3) - натуральное (можно показать, что оно равно 33...34, где количество троек равно k- 1), так как число 10k имеет остаток 1 от деления на 3.Источники и прецеденты использования
|
|||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|