ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 35141
Тема:    [ Четность и нечетность ]
Сложность: 2+
Классы: 8,9
В корзину
Прислать комментарий

Условие

В народной дружине 100 человек. Каждый вечер на дежурство выходят трое.
Можно ли организовать дежурство так, чтобы через некоторое время оказалось, что каждый дежурил с каждым ровно один раз?


Решение

Рассмотрим одного из дружинников. Он должен отдежурить с 99 другими. Но каждый раз он дежурит с двумя, а 99 на 2 не делится.


Ответ

Нельзя.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 2
Название Четность
Тема Четность и нечетность
задача
Номер 025
web-сайт
задача
Кружок
Название Кировская ЛМШ
класс
Класс 6
год
Год 2000 год
Место проведения Вишкиль
занятие
Номер Чётность-2
Название Чётность-2
Тема Четность и нечетность
задача
Номер 09

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .