Страница: 1
2 3 4 5 6 7 >> [Всего задач: 39]
|
|
Сложность: 2 Классы: 6,7,8
|
В вершинах n-угольника стоят числа 1 и –1. На каждой стороне написано произведение чисел на её концах. Оказалось, что сумма чисел на сторонах равна нулю. Доказать, что a) n чётно; б) n делится на 4.
За круглым столом сидят мальчики и девочки. Докажите, что количество пар соседей разного пола чётно.
Разность двух целых чисел умножили на их произведение. Могло ли получиться число 1999?
а) На столе лежит 21 монета решкой вверх. За одну операцию разрешается перевернуть любые 20 монет. Можно ли за несколько операций добиться, чтобы все монеты легли орлом вверх?
б) Тот же вопрос, если монет 20, а разрешается переворачивать по 19.
От потолка комнаты вертикально вниз по стене поползли две мухи. Спустившись до пола, они поползли обратно. Первая муха ползла в оба конца с одной и той же скоростью, а вторая хотя и поднималась вдвое медленнее первой, но зато спускалась
вдвое быстрее.
Какая из мух раньше приползет обратно? У какой из мух выше средняя скорость движения?
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 39]