ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 35721
Темы:    [ Вспомогательная окружность ]
[ Неравенства с углами ]
[ Вписанный угол, опирающийся на диаметр ]
[ Диаметр, основные свойства ]
[ Четырехугольник (неравенства) ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Докажите, что если в четырехугольнике два противоположные угла тупые, то диагональ, соединяющая вершины этих углов, меньше другой диагонали.

Подсказка

Пусть B и D - вершины тупых углов четырехугольника ABCD. Постройте на диагонали AC как на диаметре окружность.

Решение

Пусть B и D - вершины тупых углов четырехугольника ABCD. Построим на диагонали AC как на диаметре окружность. Тогда точки B и D лежат внутри этой окружности. Пусть прямая BD пересекает окружность в точках M и N. Тогда BD<MN, но MN не меньше AC, так как длина хорды окружности не превосходит диаметра этой окружности.

Замечания

Источники и прецеденты использования

web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .