ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Путешественник, сняв в гостинице комнату на неделю, предложил хозяину в уплату цепочку из семи серебряных колец — по кольцу за день, с тем, однако, условием, что будет рассчитываться ежедневно. Хозяин согласился, оговорив со своей стороны, что можно распилить только одно кольцо. Как путешественнику удалось расплатиться с хозяином гостиницы? |
Задача 52746
Условие
В прямоугольном треугольнике ABC катеты AB и AC равны 4 и 3 соответственно. Точка D делит гипотенузу BC пополам. Найдите расстояние между центрами окружностей, вписанных в треугольники ADC и ABD.
Подсказка
Если O1 и O2 — центры данных окружностей, то треугольник O1DO2 — прямоугольный.
Решение
Пусть O1 и O2 — центры окружностей, вписанных в
треугольники ADC и ABD соответственно, P и Q — их
точки касания со стороной BC. Обозначим
Из равнобедренного треугольника ADB находим, что
sin
DQ =
Аналогично находим, что DP = 1. Тогда
DO2 =
DO1 =
O1O22 = DO21 + DO22 =
Следовательно,
O1O2 =
Ответ
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке