ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52813
Темы:    [ Вписанные четырехугольники ]
[ Вписанный угол равен половине центрального ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

Дан равнобедренный треугольник ABC с основанием AC. Окружность радиуса R с центром в точке O проходит через точки A и B и пересекает прямую BC в точке M, отличной от B и C. Найдите расстояние от точки O до центра описанной окружности треугольника ACM.


Решение

Пусть O1 – центр второй окружности. Тогда  ∠AO1M = 2∠C = 180° – ∠B.  Следовательно, точки A, B, M и O1 лежат на одной окружности. Поэтому точка O1 принадлежит описанной окружности треугольника ABM, то есть  OO1 = R.


Ответ

R.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 478

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .