ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52833
Темы:    [ Теорема синусов ]
[ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4+
Классы: 8,9
В корзину
Прислать комментарий

Условие

В выпуклом четырёхугольнике ABCD известны углы: $ \angle$BAC = 20o, $ \angle$BCA = 35o, $ \angle$BDC = 40o, $ \angle$BDA = 70o. Найдите угол между диагоналями этого четырёхугольника.


Подсказка

Проведите биссектрису угла ADB.


Решение

Пусть K — точка пересечения биссектрисы угла ADB с диагональю АС. Поскольку $ \angle$KDB = $ \angle$KCB = 35o, то точки K, B, C, D лежат на одной окружности. Поэтому

$\displaystyle \angle$BKC = $\displaystyle \angle$BDC = 40o$\displaystyle \angle$ABK = $\displaystyle \angle$BKC - $\displaystyle \angle$BAC = 40o - 20o = 20o.

Тогда AK = BK и радиус окружности, описанной около треугольника AKD, равен радиусу первой окружности ( $ \angle$ADK = $ \angle$KDB = 35o). Поэтому

$\displaystyle \angle$CAD = $\displaystyle \angle$ACD = $\displaystyle {\frac{180^{\circ} - 110^{\circ}}{2}}$ = 35o.

Следовательно, угол между диагоналями равен

$\displaystyle \angle$BDC + $\displaystyle \angle$ACD = 40o + 35o = 75o.


Ответ

75o.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 499

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .