ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52899
Темы:    [ Две касательные, проведенные из одной точки ]
[ Признаки и свойства касательной ]
[ Вспомогательные подобные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Из одной точки проведены к кругу две касательные. Длина касательной равна 156, а расстояние между точками касания равно 120. Найдите радиус круга.


Решение

  Пусть O – центр круга, MA и MB – касательные, A и B – точки касания, K – середина отрезка AB. Тогда  MK² = AM² – AK² = 156² – 60² = 96·216 = 144².
  Из подобия треугольников MAO и MKA следует, что  OA : AM = AK : MK.  Поэтому  OA = AM·AK/MR = 65.


Ответ

65.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 566

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .