ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52947
Темы:    [ Вписанный угол равен половине центрального ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4+
Классы: 8,9
В корзину
Прислать комментарий

Условие

В окружность с центром O вписан треугольник BAC с тупым углом при вершине A. Точка P является серединой большей из дуг, стягиваемых хордой BC. Радиус OA пересекает сторону BC в точке L, а хорда AP пересекает сторону BC в точке Q. Пусть AF — высота треугольника BAC. Найдите отношение площади треугольника AOP к площади треугольника AQF, если известно, что биссектриса угла A треугольника ALF равна $ {\frac{1}{\sqrt{5}}}$, AP = $ \sqrt{3}$ и $ \angle$OPA = 30o.


Ответ

10.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 614

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .