ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 52948
Темы:    [ Вписанный угол равен половине центрального ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Около треугольника ABC ($ \angle$A > 90o) описана окружность с центром O. Продолжение биссектрисы AL этого треугольника пересекает окружность в точке F. Обозначим через E точку пересечения радиуса AO со стороной BC. Пусть AH — высота треугольника ABC. Найдите отношение площади четырёхугольника FOEL к площади треугольника AEL, если известно, что AH = $ {\frac{\sqrt{2}}{2}}$, AF = 2$ \sqrt{3}$, $ \angle$AEH = 30o.


Ответ

5.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 615

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .