|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Прямые PA и PB касаются окружности с центром O (A и B — точки касания). Проведена третья касательная к окружности, пересекающая отрезки PA и PB в точках X и Y. Докажите, что величина угла XOY не зависит от выбора третьей касательной. Общая внутренняя касательная к окружностям с радиусами R и r пересекает их общие внешние касательные в точках A и B и касается одной из окружностей в точке C. Докажите, что AC . CB = Rr. |
Задача 53390
УсловиеВ треугольнике ABC ∠B = 36°, ∠C =
42°. На стороне BC взята точка M так, что BM = R, где R – радиус описанной окружности треугольника ABC. ПодсказкаДокажите, что точка M лежит на радиусе, соединяющем центр описанной окружности с вершиной A. Решение Пусть O – центр описанной окружности. ∠AOB = 2∠C = 84°, ∠BOC = 2∠B + 2∠C = 156°, ∠OBC = 90° – ½ ∠BOC = 12°, Ответ54°. Источники и прецеденты использования
|
||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|