ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 53542
Темы:    [ Параллелограмм Вариньона ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

В выпуклом четырехугольнике ABCD диагонали AC и BD равны соответственно a и b. Точки E, F, G и H являются соответственно серединами сторон AB, BC, CD и DA. Площадь четырёхугольника EFGH равна S. Найдите диагонали EG и HF четырёхугольника EFGH.


Подсказка

Середины сторон любого четырёхугольника являются вершинами параллелограмма.


Ответ

$ {\frac{1}{2}}$$ \sqrt{a^{2}+ b^{2} \pm 2\sqrt{a^{2}b^{2} - 16S^{2}}}$ .

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1271

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .