|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи
В витрине ювелирного магазина стоит манекен, на шею которого надето ожерелье. Оно состоит из N колечек, нанизанных на замкнутую нить. Все колечки имеют разные размеры. В зависимости от размера колечки пронумерованы числами от 1 до N, начиная с самого маленького и до самого большого. Колечки можно передвигать вдоль нити и протаскивать одно через другое, но только в том случае, если номера этих колечек отличаются более чем на единицу. Продавец хочет упорядочить колечки так, чтобы они располагались по возрастанию номеров вдоль нити по часовой стрелке. Снимать ожерелье с манекена нельзя. Требуется написать программу, которая по заданному начальному расположению колечек находит последовательность протаскиваний колечек одно через другое, приводящую исходное расположение колечек в желаемое. Формат входных данных В первой строке входного файла записано число N (2 ≤ N ≤ 50). Во второй строке через пробел следуют N различных чисел от 1 до N - номера колечек, расположенных вдоль нити по часовой стрелке. Формат выходных данных Выходной файл должен содержать описание процесса упорядочения. В каждой строке, кроме последней, должны быть записаны через пробел два числа, указывающие номера колечек, протаскиваемых друг через друга. В последней строке должен стоять ноль. Количество строк выходного файла не должно превышать 50000. Если требуемого упорядочения колечек достичь не удается, в выходной файл нужно вывести одно число √1. Пример
Найдите корень уравнения 81x-8 = |
Задача 53570
УсловиеНайдите расстояние между точками касания окружностей, вписанных в треугольники ABC и CDA, со стороной AC, если а) AB = 5, BC = 7, CD = DA; б) AB = 7, BC = CD, DA = 9.
ПодсказкаРасстояние от вершины треугольника до ближайшей точки касания с вписанной окружностью равно разности между полупериметром и противолежащей стороной треугольника (x = p - a).
Решениеа) Пусть вписанная окружность треугольника ABC касается стороны AC в точке K, а вписанная окружность треугольника CDA — в точке M. Поскольку расстояние от вершины треугольника до точки касания с вписанной окружностью равно разности между полупериметром и противолежащей стороной треугольника, то
AK =
Тогда
KM = | AK - AM| =
Ответа) 1; б) 1.
Источники и прецеденты использования
|
||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|