ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 53581
Темы:    [ Признаки и свойства параллелограмма ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 8,9
В корзину
Прислать комментарий

Условие

Через вершину C параллелограмма ABCD проведена произвольная прямая, пересекающая продолжения сторон AB и AD в точках K и M соответственно. Докажите, что произведение BK·DM не зависит от того, как проведена эта прямая.


Подсказка

Указанное произведение равно произведению смежных сторон параллелограмма.


Решение

Из подобия треугольников KBC и CDM следует, что  BK : BC = CD : DM,  поэтому  BK·DM = BC·CD.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1322

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .