ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 53635
Темы:    [ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Периметр треугольника ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Из вершины A треугольника ABC опущены перпендикуляры AM и AP на биссектрисы внешних углов B и C.
Докажите, что отрезок PM равен половине периметра треугольника ABC.


Подсказка

Пусть прямые AM и AP пересекают прямую BC в точках K и L. Тогда отрезок KL равен половине периметра исходного треугольника, а MP – средняя линия треугольника AKL.


Решение

  Пусть прямые AM и AP пересекают прямую BC в точках K и L. Поскольку высоты BM и CP треугольников ABK и ACL являются их биссектрисами, то эти треугольники равнобедренные, поэтому  BK = AB  и  CL = AC.  Значит, отрезок KL равен периметру треугольника ABC.
  Высоты BM и CP равнобедренных треугольников ABK и ACL являются их медианами, поэтому точки M и P – середины отрезков AK и AL. Значит, MP – средняя линия треугольника AKL. Следовательно, отрезок MP равен половине отрезка KL, то есть половине периметра треугольника ABC.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1370

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .