ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 53694
УсловиеВозможно ли, чтобы одна биссектриса треугольника делила пополам другую биссектрису? ПодсказкаПримените один из признаков равнобедренного треугольника. РешениеПредположим, что биссектриса внутреннего угла A треугольника ABC делит пополам биссектрису BK этого треугольника. Тогда треугольник BAK – равнобедренный, так как биссетриса его внутреннего угла A является медианой. Значит, ∠AKB = ∠ABK = ∠CBK, что невозможно, так как AKB – внешний угол треугольника CBK. ОтветНевозможно. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|