ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 54351
Темы:    [ Площадь круга, сектора и сегмента ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

Площадь треугольника ABC равна 1, $ \angle$A = arctg$ {\frac{3}{4}}$, точка O — середина стороны AC. Окружность с центром в точке O касается стороны BC и пересекает сторону AB в точках M и N, при этом AM = NB. Найдите площадь части треугольника ABC, заключённой внутри круга.


Ответ

$ {\frac{\pi}{3}}$ - $ {\frac{2}{3}}$arccos$ {\frac{3}{4}}$ + $ {\frac{\sqrt{7}}{8}}$.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2114

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .