Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 54809
Темы:    [ Теорема косинусов ]
[ Две касательные, проведенные из одной точки ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

В треугольник со сторонами AB = 8, BC = 6, AC = 4 вписана окружность. Найдите длину отрезка DE, где D и E — точки касания этой окружности со сторонами AB и AC соответственно.


Подсказка

Отрезок AD равен разности между полупериметром треугольника ABC и стороной BC.


Ответ

$ {\frac{3\sqrt{10}}{4}}$.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2755

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .