ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 54913
Темы:    [ Признаки и свойства параллелограмма ]
[ Медиана, проведенная к гипотенузе ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Точка M – середина стороны CD параллелограмма ABCD, точка H – проекция вершины B на прямую AM.
Докажите, что треугольник CBH равнобедренный.


Подсказка

Продолжите отрезки AM и BC до взаимного пересечения.


Решение

Продолжим отрезки AM и BC до пересечения в точке K. Из равенства треугольников CMK и DMA следует, что  CK = AD = BC,  поэтому HC – медиана прямоугольного треугольника BHK, проведённая из вершины прямого угла. Следовательно,  CH = BC.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 2857

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .