ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 54969
УсловиеДиагонали выпуклого четырёхугольника равны a и b, а отрезки, соединяющие середины противоположных сторон, равны между собой. Найдите площадь четырёхугольника.
ПодсказкаСередины сторон четырёхугольника являются вершинами параллелограмма.
РешениеСередины сторон любого четырёхугольника являются вершинами параллелограмма. В данном случае этот параллелограмм — прямоугольник, так как его диагонали равны между собой. Диагонали данного четырёхугольника параллельны сторонам этого прямоугольника. Поэтому они взаимно перпендикулярны. Следовательно, искомая площадь равна .
Ответ.
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|