ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 55010
Темы:    [ Отношение площадей треугольников с общим углом ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

В треугольнике ABC угол C равен 30°, а угол A – острый. Перпендикулярно стороне BC проведена прямая, отсекающая от треугольника ABC треугольник CNM (точка N лежит между вершинами B и C). Площади треугольников CNM и ABC относятся, как  3 : 16.  Отрезок MN равен половине высоты BH треугольника ABC. Найдите отношение  AH : HC.


Подсказка

Треугольники BHC и MNC подобны.


Решение

  Заметим, что  CN/BC·CM/AC = SMNC/SABC = 3/16.
  Треугольник MNC подобен треугольнику BHC с коэффициентом ½, поэтому  CN/CH = ½,  CM/CB = ½.  Значит,  CN/AC = 3/8,  а   CH/AC = ¾. Следовательно,
AH/HC = 1/3.


Ответ

1 : 3.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3066

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .