ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 55028
Темы:    [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Средняя линия трапеции ]
[ Отношение площадей подобных треугольников ]
Сложность: 4+
Классы: 8,9
В корзину
Прислать комментарий

Условие

Площадь трапеции ABCD равна S, отношение оснований $ {\frac{AD}{BC}}$ = 2. Отрезок MN расположен так, что он параллелен диагонали BD, пересекает диагональ AC, а отрезок AM параллелен отрезку CN. Найдите площадь четырёхугольника AMND, если $ {\frac{CN}{AM}}$ = 3, $ {\frac{BD}{MN}}$ = 6 (найдите все решения).


Ответ

$ {\frac{5}{24}}$S, $ {\frac{1}{8}}$S.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3084

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .