ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 55054
Темы:    [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

В треугольнике ABC, площадь которого равна 6, на стороне AB взята точка K, делящая эту сторону в отношении  AK : BK = 2 : 3,  а на стороне AC взята точка L, делящая AC в отношении  AL: LC = 5 : 3.  Точка Q пересечения прямых CK и BL, отстоит от прямой AB на расстоянии 1,5. Найдите сторону AB.


Решение

  Проведём через точку K прямую, параллельную BL, до пересечения в точке M со стороной AC. По теореме Фалеса  LM = 3/5 AL = CL.  Значит,  CQ = KQ.
  Поэтому высота CH треугольника ABC в два раза больше расстояния от Q до AB, то есть равна 3, а  AB = 2SABC/CH = 4.


Ответ

4.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 3110

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .