ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 55282
Темы:    [ Теорема синусов ]
[ Теорема Пифагора (прямая и обратная) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9
В корзину
Прислать комментарий

Условие

В треугольнике ABC сторона BC равна 2, высота, опущенная из вершины C на сторону AB, равна $ \sqrt{2}$, а радиус окружности, описанной около треугольника ABC, равен $ \sqrt{5}$. Найдите стороны AB и AC треугольника, если известно, что угол ABC — острый.


Ответ

3$ \sqrt{2}$, $ \sqrt{10}$.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4029

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .