ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 55330
Темы:    [ Теорема косинусов ]
[ Неравенство треугольника ]
Сложность: 4
Классы: 8,9
В корзину
Прислать комментарий

Условие

В прямоугольнике ABCD сторона BC вдвое короче стороны CD. Внутри прямоугольника расположена точка E, причём AE = $ \sqrt{2}$, CE = 3, DE = 1. Найдите косинус угла CDE и площадь прямоугольника ABCD.


Ответ

$ {\frac{7}{\sqrt{85}}}$; $ {\frac{34}{5}}$.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4077

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .