ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 56489
Темы:    [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей подобных треугольников ]
Сложность: 2+
Классы: 8,9
В корзину
Прислать комментарий

Условие

На стороне AC треугольника ABC взята точка E. Через точку E проведены прямая DE параллельно стороне BC и прямая EF параллельно стороне AB (D и E — точки соответственно на этих сторонах). Докажите, что SBDEF = 2$ \sqrt{S_{ADE}\cdot S_{EFC}}$.

Решение

SBDEF/2SADE = SBDE/SADE = DB/AD = EF/AD = $ \sqrt{S_{EFC}/S_{ADE}}$. Поэтому SBDEF = 2$ \sqrt{S_{ADE}\cdot S_{EFC}}$.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 1
Название Подобные треугольники
Тема Подобные треугольники
параграф
Номер 3
Название Отношение площадей подобных треугольников
Тема Подобные треугольники (прочее)
задача
Номер 01.033

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .