|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Задача 56584
УсловиеВписанная окружность касается сторон AB и AC треугольника ABC в точках M и N. Пусть P — точка пересечения прямой MN и биссектрисы угла B (или ее продолжения). Докажите, что:а) б) SABP : SABC = 1 : 2. Решениеа) Достаточно доказать, что если P1 — точка биссектрисы угла B (или ее продолжения), из которой отрезок BC виден под углом 90o, то P1 лежит на прямой MN. Точки P1 и N лежат на окружности с диаметром CO, где O — точка пересечения биссектрис, поэтомуб) Так как Источники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|